Джироламо Саккери

Критика евклидовского обоснования геометрии, продолжалась на протяжении нескольких веков и ставшая особенно острой в 19 столетии, привела к попыткам нового дедуктивного построения геометрии, отвечающего современным требованиям науки.

Одним из ученых, предвосхитивших неевклидову геометрию, был итальянский монах Джироламо Саккери (1667 – 1733), преподававший грамматику в иезуитской коллегии в Милане. Здесь под влиянием Джованни Чевы (Джованни Чева (1648 – 1734) – итальянский инженер-гидравлик и экономист) Саккери заинтересовался математикой и стал серьезно заниматься ею. Впоследствии он преподавал математику в университете города Павши. На последнем году своей жизни Саккери опубликовал (на латинском языке) книгу под заглавием «Евклид, очищенный от всех пятен». В ней он поставил задачу исправить все недостатки («пятна») «Начал» Евклида, в первую очередь доказать V постулат. Саккери решительнее и дальше своих предшественников сделал попытку доказать этот постулат от противного.

Рассматривая четырехугольник (рис. 1), носящий его имя, Саккери стремиться доказать, что гипотезы тупого и острого углов приводит к логическим противоречиям и что остается лишь гипотеза прямого угла, из которого вытекает V постулат.

1. Он легко опровергает гипотезу тупого угла, он доказывает, что:

геометрическое место точек плоскости, равноотстоящих от данной прямой по одну сторону, не является прямой или окружностью, а другой линией (которую Лобачевский впоследствии назвал эквидистантой, то есть «равноотстоящей»);

2. две прямые, содержащиеся в одной плоскости (рис. 2), либо пересекаются в одной точке (такие прямые Лобачевский назвал «сходящимися»), либо не пересекаются, имея общий перпендикуляр, по обе стороны от которого они друг от друга удаляются («расходящиеся прямые» в терминологии Лобачевского), либо не пересекаются, удаляясь друг от друга в одном направлении и асимптотически приближаясь к другому (параллельные Лобачевского)

Если бы Саккери пользовался лишь логическими выводами, строгой дедукцией, то никакого противоречия он в указанных выше предложениях он не нашел бы. Однако, будучи предупрежден о невозможности того, что для евклидова постулата не имелось доказательства, Саккери для опровержения гипотезы острого угла прибег к утверждению чисто интуитивного характера: существование асимптотических прямых якобы «противоречит природе прямой линии». Заслуга Саккери состоит, разумеется, не в конечном его установлении промежуточных предложений, выведенных им на основе гипотезы острого угла, которые спустя 100 лет легли в основу новой неевклидовой геометрии Лобачевского.

Новости образования:

Метод наглядного моделирования в коррекции общего недоразвития речи
Практика логопедической работы показывает, что в качестве эффективного коррекционного средства можно использовать метод наглядного моделирования. Он позволяет ребенку зрительно представить абстрактные понятия (звук, слово, текст), научиться работать с ними. Это особенно важно для дошкольников, поск ...

Понятие и определение одаренности у детей
Одаренность - значительное по сравнению с возрастными нормами опережение в умственном развитии либо исключительное развитие специальных способностей (музыкальных, художественных и др.). Одаренность детей может быть установлена и изучена только в процессе обучения и воспитания, в ходе выполнения реб ...

Особенности памяти младших школьников с нарушениями интеллекта
Расстройства памяти у умственно отсталых лиц объясняется слабостью замыкательной функции коры и в связи с этим малым объемом и замедленным темпом формирования новых условных связей, а также их непрочностью. Ослабление активного внутреннего торможения, обуславливающее недостаточную концентрированнос ...

Главное на сайте

Copyright © 2020 - All Rights Reserved - www.focuseducation.ru