Геометрия Лобачевского

Страница 2

Лобачевский сразу же поставил вопрос об экспериментальной проверке того, какая геометрия имеет место в реальном мире – «употребительная» или «воображаемая», для чего он решил измерить сумму углов треугольника, образованного двумя диаметрально противоположными положениями Земли на ее орбите и Сириусом и считая один из углов этого треугольника прямым, а другой – равным углу параллельности, Лобачевский нашел, что эта сумма отличается от на разность, меньшую ошибки угломерных инструментов в его время. «После того, - пишет Лобачевский, - можно вообразить, сколько эта разность, на которой основана наша теория параллельных, оправдывает точность всех вычислений обыкновенной геометрии и дозволяет принятые начала рассматривать как бы строго доказанными».

Это объясняет, что под «строгим доказательством теоремы о параллельных» в докладе 1826 г. Лобачевский понимал невозможность установить экспериментальным путем ,какая из двух геометрий имеет место в реальном мире, откуда вытекает, что на практике можно пользоваться «употребительной геометрией», не рискуя впасть в ошибку.

Наиболее полно изложена система Лобачевского в его «Новых началах с полной теорией параллельных» (1835-1838). Изложение геометрии у Лобачевского основывается на чисто топологических свойствах прикосновения и сечения, конгруэнтность тел и равенство отрезков определяются по существу с помощью движения.

В позднейших работах Лобачевский ввел координаты и вычислил из геометрических соображений целый ряд новых определенных интегралов, которым он специально посвятил работу «Применение воображаемой геометрии к некоторым интегралам» (Учен. зап. Казан. ун-та, 1836), многие из которых были включены в дальнейшие справочники.

Изучив теорию вопроса о параллельных прямых я узнала о том какие теории есть еще, т.е. Геометрии отличные от геометрии Евклида. Например, геометрия Н.И.Лобачевского, в его геометрии через точку не лежащую на данной прямой проходит бесконечно много прямых параллельных данной.

Оказалось что его геометрия не только не хуже евклидовой, но в некотором отношении даже совершеннее ее, богаче.

Геометрия Римана, в его геометрии прямые это замкнутые линии, на которых точки расположены как на окружности, только очень большого диаметра. В геометрии Римана не существует вообще никакой прямой , проходящей через данную точку параллельно данной прямой. Это второй вид неевклидовой геометрии.

Янош Больяи пытался доказать V постулат Евклида (аксиома параллельности), сохранившиеся чертежи свидетельствуют, что Больяи уже тогда был на пути к открытию неевклидовой геометрии, но его открытие записанное в «Аппендиксе» не было признано при его жизни.

А.М.Лежандр является автором школьного учебника «Начала геометрии», он переиздавался при жизни автора 14 раз. Объяснялось это тем, что каждый раз он обнаруживал ошибку в доказательстве V постулата. Однако его исследования очень поучительны и вскрывают глубокие связи между V постулатом и другими предложениями.

Страницы: 1 2 

Новости образования:

Изучение отношения подростков к родине, родному краю, патриотизму
Задача воспитания гражданственности и патриотизма не теряет своей значимости на протяжении различных эпох и формаций. Многовековая история наших народов свидетельствует о том, что без патриотизма немыслимо создать сильную державу, невозможно привить людям понимание их гражданского долга и уважения ...

Психолого-педагогическая характеристика младших школьников с задержкой психического развития
С каждым годом растёт число детей так называемой группы риска. Л.В.Кузнецова в 2001 году приводит следующие данные: в настоящее время не менее чем у 25% детей дошкольного возраста, посещающих детские сады, отмечается повышенная нервность, 42% имеют те или иные психосоматические проблемы [35, с.120 ...

Задачи и содержание работы по формированию грамматического строя речи
Термин «грамматика» употребляется в языкознании в двух значениях: он обозначает, во-первых, грамматический строй языка, во-вторых, науку, свод правил об изменении слов и их сочетании в предложении. Методика развития речи рассматривает вопросы усвоения детьми в речевой практике именно грамматическог ...

Главное на сайте

Copyright © 2025 - All Rights Reserved - www.focuseducation.ru