Преобразования задачи на уроках математики в начальной школе

Страница 4

- Далее ученики предлагают свои варианты задачи, изменяя ее вопрос.

2. Сокращение задачи.

Цель: помочь детям свободно ориентироваться в составных задачах.

Можно предложить детям задачи в два действия, тогда видоизменяя условие или вопрос, дети должны из составной задачи сделать простую.

а) Изменение условия:

- «В магазин привезли 10 кукол и 15 машинок. Семь игрушек продали. Сколько игрушек осталось в магазине?»

- «В магазин привезли 25 игрушек. Семь игрушек продали. Сколько игрушек осталось в магазине?»

б) Изменение вопроса:

- «Старший брат нарисовал 5 рисунков, а младший – на 3 рисунка меньше. Сколько рисунков нарисовал младший брат?»

- «Старший брат нарисовал 5 рисунков, а младший – на 3 рисунка меньше. Сколько рисунков нарисовали братья вместе?»

Видоизменяя условие и требование задачи, дети глубже вникают во взаимосвязь между этими элементами задачи, учатся рассматривать условие задачи под углом зрения ее вопроса и наоборот.

3. Сопоставление задач.

Цель: показать важность отношений «больше на…», «больше в…», «меньше на…», и т.п.

На данном этапе полезно сопоставлять аналогичные задачи в два действия и видоизменять первую по образцу второй, а вторую по образцу первой. Например:

1) Мальчик успел решить на уроке 3 столбика примеров, по 4 примера в каждом столбике, а его сосед на 3 примера меньше. Сколько примеров решил второй мальчик?

2) В одном доме 3 этажа и в каждом этаже по 6 окон, а в другом доме на 2 окна больше. Сколько окон во втором доме?

При сопоставлении этих задач сначала указывается их сходство, затем разница и, наконец, выясняется, почему в задаче про мальчиков второе действие – вычитание, а в задаче про окна – сложение и как можно изменить первую задачу, чтобы она решалась как вторая и вторую, чтобы она решалась как первая.

4. Преобразование задачи

Цель: формировать у детей умение преобразовывать задачи на репродуктивном уровне, закрепить знания детей о компонентах задачи: условии и вопросе, закреплять знания и способы учебной деятельности при решении задач.

1) Детям дается задача: «В зоомагазине 4 клетки. В трех из них по 5 волнистых попугайчиков в каждой. Сколько волнистых попугайчиков в четвертой клетке, если в четырех клетках всего 22 волнистых попугайчика?»

- О чем говориться в задаче?

- Что нам известно?

- Какой вопрос ставится в задаче?

- Можем ли мы сразу на него ответить?

Составление краткой записи в виде предметной иллюстрации:

Решение задачи. Оформление решения.

Далее, работая над имеющейся краткой записью, изменяем задачу.

- «В зоомагазине 4 клетки. В двух из них по 5 волнистых попугайчиков в каждой. Сколько всего волнистых попугайчиков, если в двух других по 4 волнистых попугайчика в каждом?»

- Как изменится краткая запись?

- Что изменилось в задаче?

- Повторите новую задачу, опираясь на краткую запись.

- Решите эту задачу.

Задача № 4 стр.52 (Т.Е. Демидова, С.А. Козлова. Моя математика. 2 часть)

«В школьном уголке природы 4 аквариума. В трёх из них по 8 рыбок в каждом. Сколько рыбок в четвертом аквариуме, если в четырех аквариумах всего 31 рыбка?»

- О чем говориться в задаче?

- Что нам известно?

- Что значит по 8 рыбок в каждом?

- Какой вопрос ставится в задаче?

- Можем ли мы сразу на него ответить?

- Что нам нужно найти сначала?

- Сделаем краткую запись в виде рисунка:

- Решите задачу самостоятельно.

8 * 3 = 24 (р) в 3-х аквариумах 31 – 24 = 7(р) в 4-ом аквариуме

- Как мы можем изменить задачу? Составьте новую задачу, запишите ее и затем решите.

2) Задача № 5 стр. 57 (Т.Е. Демидова, С.А. Козлова. Моя математика. 2 класс, 2 часть): «Большой кенгуру сделал 3 прыжка по 8 метров, а затем в обратную сторону 2 прыжка по 9 метров. Какое расстояние преодолел кенгуру?»

Страницы: 1 2 3 4 5 6 7 8

Новости образования:

Попытки доказательства V постулата Евклида
параллельный геометрия учащийся треугольник Первые 28 предложений «Начал» не опираются на V постулат, возможно Евклид старался отодвинуть применение этого постулата до тех пор, пока использование его не станет настоятельно необходимым. Попытки доказать пятый постулат продолжались с тех пор в течени ...

Проблемы музыкально-художественного воспитания детей
Основой теории музыкального воспитания детей являются огромные познавательные и воспитательные возможности музыкального искусства. Впечатления детства глубоки и сильны, порой неизгладимы; использование музыкального искусства для углубления этих впечатлений - вот важная задача, которую стремятся осу ...

Анализ «Фестиваля Народов Красноярского края»
Проблема анализа фестиваля состояла в том, что мы не знали, что выбрать за основание анализа. Поскольку педагогическая ситуация в модели воспитательного процесса конкретизирует схему трансляции культуры, а деятельность выделяем как главное условие формирования толерантности, в своем исследовании мы ...

Главное на сайте

Copyright © 2019 - All Rights Reserved - www.focuseducation.ru