Преобразования задачи на уроках математики в начальной школе

Страница 3

Выполнив соответствующую подготовительную работу, можно перейти к обучению детей преобразования задач.

На этой ступени обучения преобразованию задач дети учатся использовать имеющиеся знания о структурных компонентах задачи и связях между ними. Учащиеся после решения задачи выполняют работу по ее преобразованию, т.е. изменяют связи межу числовыми данными в условии, между числовыми данными условия и требования или между числовыми данными в условии и числовыми данными условия и требования.

В методике работы на этой ступени, основываясь на работах Беспалько В.Л. об уровнях усвоения информации, мы выделим 3 этапа:

I этап - формирование знаний-знакомств;

II этап - формирование умений-копий;

III этап - формирование умений-знаний.

Выделенные этапы органически связаны между собой. Раскроем работу на каждом из них:

1 этап: формирование знаний-знакомств

Цель: познакомить учащихся с преобразованием задач, выявить имеющиеся знания.

На данном этапе дети самостоятельно или фронтально решают задачу, после ее решения предлагается задание на ее преобразование: учитель преобразовывает задачу, ученики наблюдают за этим и затем решают преобразованную задачу.

Выполняется следующая работа, цель которой познакомить учащихся с преобразованием задач, выявить имеющиеся знания, закрепить знания детей о структурных компонентах задачи, закреплять знания и способы учебной деятельности при решении задач; продолжить работу с памяткой.

Например, детям дана задача (Т.Е. Демидова, С.А. Козлова. Моя математика. 2 часть, стр. 51 №6): «Катя, Лена и Наташа купили по 4 тетради каждая, а Петя купил 8 тетрадей. Сколько всего тетрадей купили ребята?»

- В работе над задачей нам поможет памятка. Воспользуемся ею.

В ученических тетрадях должны быть краткая запись и решение задачи:

4*3=12 (т.) всего у девочек

12+8=20 (т.)

Ответ: 20 тетрадей.

После этого учитель предлагает продолжить работу над задачей:

а) - Как мы решим задачу, если вопрос изменится на такой: (на доске) На сколько больше тетрадей у девочек вместе, чем у Пети?

4*3=12 (т.) у девочек вместе

12-8=4 (т.)

- Изменилось ли условие задачи?

- Изменилось ли решение задачи? Как?

- Что повлияло на изменение решения задачи?

- Как еще мы можем изменить вопрос задачи?

- Изменится ли при новом вопросе решение задачи, ведь условие осталось прежним?

б) - Как мы решим задачу, если в её условие внесем следующие изменения: «Катя и Лена купили по 4 тетради каждая, а Петя и Наташа купили 8 тетрадей каждый. Сколько всего тетрадей купили ребята?»

4*2=8 (т.) купили Катя и Лена

8*2=16 (т.) купили Петя и Наташа

8+16=24 (т.)

- Изменился ли в этой задаче вопрос?

- Изменилось ли решение? Как?

- Что повлияло на изменение решения задачи?

- Как еще мы можем изменить условие задачи?

- Если мы будем менять условие задачи, а вопрос оставим прежний, изменится ли решение?

На данном этапе при подробном анализе задачи дети не затрудняются в ее решении и решении готовых преобразованных задач.

2 этап: формирование умений-копий

Цель: формирование умений преобразовывать задачи на репродуктивном уровне.

На данном этапе дети решают задачу, учитель преобразовывает ее. Затем дети решают задачу аналогичную первой и по аналогии преобразовывают ее. Этап подразумевает введение понятия «преобразование» и составление алгоритма преобразования задачи.

Для формирования умений-копий может быть проведена работа:

1. Наращивание задачи.

Цель: помочь детям свободно ориентироваться в составных задачах.

Учащимся предлагается решить задачу в одно действие, а затем так изменить ее условие или вопрос, чтобы она решалась двумя действиями.

а) Изменение условия:

- «У Саши было 50 руб. Он купил машинку, которая стоит 18 руб. Сколько денег у него осталось?»

- Учитель объясняет на примере, что может добавить условие: «У Саши было 50 руб. Он купил машинку, которая стоит 18 руб., и чупа-чупс, который стоит 3 руб. Сколько денег у него осталось?»

- Далее ученики предлагают свои варианты, наращивая условие новыми данными.

б) Изменение вопроса:

- «Папа надул для дочки 8 красных воздушных шариков, а голубых – на 2 шарика больше. Сколько голубых шариков надул папа?»

- Учитель объясняет на примере, что может изменить вопрос: «Папа надул для дочки 8 красных воздушных шариков, а голубых – на 2 шарика больше. На сколько голубых шариков больше, чем красных?»

Страницы: 1 2 3 4 5 6 7 8

Новости образования:

Взаимосвязь музыкального воспитания, обучения и развития
Гармоничность физического и умственного развития детей, их нравственной чистоты и эстетического отношения к жизни и искусству связана с совершенствованием многих качеств и свойств личности. В дошкольном возрасте, когда полученные музыкальные впечатления остаются в памяти на всю жизнь, особенно боль ...

Проявление творческих умений учителя в играх
Взаимодействие учителя и учеников во время игр требу­ет умений особого рода: создавать общий фон для проявления творчества устанавли­вать психологический контакт, рефлексия творческой индивидуальности и индивидуализации, стимулирование нерегламентированного общения, выстраивать гармонич­ные межличн ...

Анализ методик коррекции активного и пассивного словаря у дошкольников с ОНР
В современной методике словарная работа рассматривается как целенаправленная педагогическая деятельность, обеспечивающая эффективное освоение словарного состава родного языка. Развитие словаря понимается как длительный процесс количественного накопления слов, освоения их социально закрепленных знач ...

Главное на сайте

Copyright © 2019 - All Rights Reserved - www.focuseducation.ru