Методика проведения занятия по теме «Узлы и зацепления»

Педагогические практики » Элементы наглядной топологии в профильной школе » Методика проведения занятия по теме «Узлы и зацепления»

Страница 1

Тема: Узлы и зацепления.

Тип урока: Урок введения нового материала; урок-практикум.

Цели урока:

Обучающая: Обеспечить формирование на наглядном уровне целостной системы ведущих знаний о предмете топология.

Ознакомить с понятием узлов и зацеплений на наглядном уровне для дальнейшего изучения данного раздела математики.

Развивающая: Обеспечить у школьников развитие пространственного мышления.

Оборудование:

Литература;

Доска;

Приложения у каждого ученика.

Этапы урока:

Организационный момент.

Проверка домашнего задания.

Актуализация знаний.

Введение нового материала.

Закрепление изученного материала:

Решение задач практического содержания.

Итог урока, постановка домашнего задания:

Подведение итогов урока;

Информация о домашнем задании для учащихся.

Ход урока.

Деятельность учителя

Деятельность учеников.

Этап 1. Организационный момент.

Сообщение темы и целей урока ученикам.

Этап 2. Проверка домашнего задания.

Отвечает на вопросы учеников по домашнему заданию.

Этап 3. Актуализация знаний.

- Итак, давайте вспомним, о чём мы говорили на прошлом занятии.

- Дайте определение топологии.

- Что называется непрерывной деформацией?

Познакомились с новым понятие топология и деформацией эластичных тел.

Топология - это раздел математики, занимающийся изучением свойств фигур (или пространств), которые сохраняются при непрерывных деформациях, таких, например, как растяжение, сжатие или изгибание.

- Непрерывная деформация - это деформация фигуры, при которой не происходит разрывов (т.е. нарушения целостности фигуры) или склеиваний (т.е. отождествления ее точек).

Этап 4. Введение нового материала.

Рассказ об узлах и зацеплениях с последующим рассмотрением примеров.

Конспект в тетрадь.

Этап 5. Закрепление изученного материала.

Решение задач практического содержания

Этап 6. Итог урока, постановка домашнего задания.

- Ребята, сегодня на уроке мы познакомились с понятиями узла и зацепления, рассмотрели виды узлов и зацеплений и их свойства. Запишите, пожалуйста, домашнее задание (диктует задание).

Запись домашнего задания в тетрадь.

Узлы.

- Ребята, сегодня на уроке мы поговорим о таких важных понятиях в топологии, как узлы и зацепления. Сначала, определим понятие узла.

Узлы – предметы простые и наглядные. Вы, конечно, встречались с ними в повседневной жизни, но, может быть, не подозревали, что это объекты еще и математические. Чем отличается математический узел от узлов, которые завязывают на галстуках или шнурках ботинок? Естественно, в математике узел – это некая абстракция, рассматривается не веревка и не шнур, а бесконечно тонкая, гибкая и растяжимая нить. Кроме того, рассматривая математический узел, нужно как-то зафиксировать его концы (обычно говорят, что один конец уходит в бесконечность «вверх», а другой — в бесконечность «вниз» рис. 1), либо просто соединить их. В этом случае модель узла - замкнутая несамопересекающаяся кривая в пространстве. Будем предполагать, что эта кривая является ломаной, т.е. состоит из отрезков.

Представим узел в виде гибкой, растяжимой нити, концы которой соединены.

Самый простой узел – тривиальный. Узел называется нетривиальным, если он не эквивалентен тривиальному, т.е. его нельзя «пошевелить» (возможно растягивая, но не разрывая нить) так чтобы он превратился в тривиальный.

Рассмотрим несколько примеров нетривиальных узлов:

Наиболее простой узел:

Правый трилистник

Он называется трилистник, или точнее,- правый трилистник. Потому что существует ещё левый трилистник:

Страницы: 1 2 3

Новости образования:

Путь Роберта Оуэна
Роберт Оуэн родился 14 мая 1771 года в городе Ньютауне (Уэльс) в семье лавочника. Окончив приходскую школу в 1779, он работал помощником в мануфактурной лавке (1780), у торговца сукнами в городе Стемфорде в Линкольншире (1781), приказчиком в крупном суконном магазине в Лондоне (1784-1788), служил в ...

Проверка знаний при использовании диапозитивов, кинофильмов
Проверку необходимо проводить при демонстрации диапозитивов и кинофильмов. Например. Проверка знаний при демонстрации кинофильма "Фтор и его соединения". Фильм демонстрируется фрагментарно в течение 10 минут. Перед демонстрацией кинофильма учащимся были предложены вопросы. Они были предуп ...

Экспериментальное подтверждение условий формирования знаний у обучающихся о здоровом образе жизни
Выпускная квалификационная работа, цель которой выявить и экспериментально обосновать условия, при которых метод проекта будет являться средством формирования знаний о здоровом образе жизни у обучающихся, включает в себя ряд этапов: 1 этап – констатирующий эксперимент. Цель: выявление уровня сформи ...

Главное на сайте

Copyright © 2018 - All Rights Reserved - www.focuseducation.ru