Методика проведения занятия по теме «Двумерные поверхности»

Педагогические практики » Элементы наглядной топологии в профильной школе » Методика проведения занятия по теме «Двумерные поверхности»

Страница 3

Задача 2. Докажите, что если из проективной плоскости вырезать круг, то в результате получится фигура, гомеоморфная листу Мёбиуса.

Решение: На рисунке показано, как можно представить проективную плоскость с вырезанным диском. Сделаем разрезы b и c. Затем склеим стрелки а. В результате получим лист Мёбиуса [26].

Задача 3. Докажите, что проективная плоскость гомеоморфна сфере с одним листом Мёбиуса.

Решение: Изобразим проективную плоскость, затем преобразуем её. Сначала вырежем круг, затем распрямим стрелки для получения развёртки листа Мёбиуса. В результате получим сферу с отверстием, в которое можно «поместить» лист Мёбиуса [32]:

Задача 4. Докажите, что бутылку Клейна можно разрезать на 2 листа Мёбиуса.

Решение: Два способа склейки бутылки Клейна из квадрата изображены на рис.9. На рис. 10 пунктиром изображены требуемые разрезы для обоих способов склейки [25].

Рисунок 9

Рисунок 10

Задача 5. Докажите, что если из проективной плоскости вырезать диск, то получится лист Мёбиуса.

Задача 6. Докажите, что кольцо гомеоморфно цилиндру.

Задача 7. Проверьте, что цилиндр, тор, сфера – ориентируемые поверхности, а проективная плоскость неориентируема.

Задача 8. Докажите, что фигура, являющаяся объединением боковой поверхности цилиндра и его нижнего основания («стакан»), гомеоморфна кругу.

Задача 9. Докажите, что фигуры, изображенные на рисунке (лента, гомеоморфная боковой поверхности цилиндра, и дважды перекрученная лента) гомеоморфны между собой.

Уровень В.

Задача 10. Докажите, что сфера, к которой приклеены 3 листа Мёбиуса, гомеоморфна сфере, к которой приклеена одна ручка и один лист Мёбиуса.

Решение: Сфера, к которой приклеены два листа Мёбиуса, гомеоморфна бутылке Клейна. Поэтому сфера, к которой приклеены три листа Мёбиуса, гомеоморфна бутылке Клейна к которой приклеен один лист Мёбиуса. Такая фигура изображена на рис.11 (а). Сделаем разрез с, а затем склеим стрелки b(рис. 11 (б)). В результате получим сферу к которой приклеены ручка а и лист Мёбиуса с [25].

(а) (б)

Рисунок 11

Задача 11. Доказать, что сфера, к которой приклеены два листа Мёбиуса, гомеоморфна бутылке Клейна.

Решение:

Очевидно, что склейка двух листов Мёбиуса по их общему краю эквивалентна вклеиванию этих листов в сферу с двумя дырками [32].

Задача 12. Докажите, что замкнутая ориентируемая двумерная поверхность не может быть гомеоморфна замкнутой неориентируемой двумерной поверхности.

Задача 13. К сфере с двумя дырами приклейте цилиндр по его краям. Докажите, что полученная поверхность гомеоморфна сфере с приклеенной ручкой, т.е. тору.

Задача 14. Покажите, что кольцо и лист Мёбиуса можно получить из круга приклеивание к его границе прямоугольника по двум сторонам.

Задача 15. В шаре высверлены три сквозных цилиндрических отверстия, не соединяющихся между собой. Докажите, что поверхность получившегося тела гомеоморфна сфере с тремя ручками.

Задача 16. В шаре высверлены три сквозных цилиндрических отверстия, оси которых проходят через центр шара. Докажите, что поверхность получившегося тела гомеоморфна сфере с пятью ручками.

Задача 17. Если попарно склеить противоположные стороны квадрата с учетом указанных на рисунке а направлений, то получится тор (рисунок б, в, г). Какая поверхность получится, если склеивание произвести с учетом направлений на рисунке (сторона с остается не склеенной)?

Страницы: 1 2 3 4 5

Новости образования:

Особенности языка программирования Pascal ABC
В языке Pascal ABC любая переменная характеризуется своим типом. Под типом в данном случае понимается множество значений, которые может принимать переменная и, как следствие, множество операций, допустимых над переменной.Паскаль является языком жесткой типизации. Это означает, что тип переменной оп ...

Особенности подросткового возраста
Поиск условий, средств, форм воспитания толерантного сознания и организации толерантных отношений не может осуществляться без учета особенностей самого воспитываемого субъекта. Воспитание толерантного сознания может и должно начинаться с самого раннего возраста, как и всякое воспитание. В то же вре ...

Тестирование педагога на определение уровня педагогической культуры
Можно ли определить творчес­кую индивидуальность как процесс культуры педагогического труда? Я убеждена, что от­ветить на такой вопрос одно­значно просто невозможно. Лю­бые суждения здесь будут отно­сительными. Поэтому предлага­емые ниже вопросы — только попытка определить, насколько творческая инд ...

Главное на сайте

Copyright © 2021 - All Rights Reserved - www.focuseducation.ru