Обучающую роль математические задачи выполняют при формировании у учащихся систем л знаний, умений и навыков по математике и ее конкретным дисциплинам. Следует выделить несколько видов задач по их обучающей роли.
1) Задачи для усвоения математических понятий. Известно, что формирование математических понятий хорошо проходит при условии дательной и кропотливой работы над понятиями, их определения» и свойствами. Чтобы овладеть понятием, недостаточно выучить его Определение, необходимо разобраться в смысле каждого слова в определении, четко знать свойства изучаемого понятия. Такое знание достигается, прежде всего, при решении задач и выполнении упражнений.
2) Задачи для овладения математической символикой. Одной из целей обучения математике является овладение математическим языком и, следовательно, математической символикой. Простейшая, символ и вводится еще в начальной школе и в IV—V классах (знаки действий, равенства и неравенства, скобки, знаки угла и его величины, параллельности и т. д.). Правильному употреблению изучаемых символов надо обучать, раскрывая при решении задач их роль и назначение. Приведенные далее задачи способствуют пониманию роли скобок и учат их верному употреблению.
Существенное значение в овладение изучаемой символикой имеет правильное ее применение при записи решений задач. Учитель должен внимательно следить за грамотным применением математических символов в записях. Нельзя признать правильными такие, например, записи:
«p < 2 на 3», « Докажем
- ность прямых a и b» и др. Следовало бы записать в первом случае: «p меньше, чем 2 на 3», или «2 – p = 3», или «2 – 3 = p», или «p + 3 = 2», «2 – 3 = p», а во втором: «Докажем, что a
b».
3) Задачи для обучения доказательствам. Обучение доказательствам – одна из важнейших целей обучения математике.
Простейшими задачами, с решения которых практически начинается обучение доказательствам, являются задачи-вопросы и элементарные задачи на исследование. Решение таких задач заключается в отыскании ответа на вопрос и доказательстве его истинности.
Задачи-вопросы обычно требуют для своего решения (доказательства истинности ответа) установления одной импликации, одного логического шага от данных к доказываемому. Доказательство же при решении более сложной задачи или доказательство теоремы представляет собой цепочку шагов-импликаций.
Целью решения задач-вопросов является и осознание, уточнение и конкретизация изучаемых понятий и связей между ними. Задачи-вопросы необходимы также для усвоения учащимися вводимой символики и используемого языка. Примеры задач-вопросов:
5. х > у. Обязательно ли x2 > у2?
6. Могут ли две биссектрисы треугольника быть перпендикулярными? А две высоты?
Существенную роль в обучении доказательствам играют упражнения в заполнении пропущенных слов, символов и их сочетаний в тексте готового доказательства. Аналогичные упражнения довольно часто применяются при изучении русского языка, на уроках же математики они встречаются редко, в учебниках и задачниках их нет.
1) Мыслительные умения, восприятие и память при решении задач. Решение математических задач требует применения многочисленных мыслительных умений: анализировать заданную ситуацию, сопоставлять данные и искомые, решаемую задачу с решенными ранее, выявляя скрытые свойства заданной ситуации; конструировать простейшие математические модели, осуществляя мысленный эксперимент; синтезировать, отбирая полезную для решения задачи информацию, систематизируя ее; кратко и четко, в виде текста, символически, графически и т. д. оформлять свои мысли; объективно оценивать полученные при решении задачи результаты, обобщать или специализировать результаты решения задачи, исследовать особые проявления заданной ситуации. Сказанное говорит о необходимости учитывать при обучении решению математических задач современные достижения психологической навыки.
Исследованиями советских психологов установлено, что уже восприятие задачи различно у различных учащихся данного класса. Способный к математике ученик воспринимает и единичные элементы задачи, и комплексы ее взаимосвязанных элементов, и роль каждого элемента в комплексе. Средний ученик воспринимает лишь отдельные элементы задачи. Поэтому при обучении решению задач необходимо специально анализировать с учащимися связь и отношения элементов задачи. Так облегчится выбор приемов переработки условия задачи. При решении задач часто приходится обращаться к памяти. Индивидуальная память способного к математике ученика сохраняет не всю информацию, а преимущественно «обобщенные и свернутые структуры». Сохранение такой информации не загружает мозг избыточной информацией, а запоминаемую позволяет дольше хранить и легче использовать. Обучение обобщениям при решении задач развивает, таким образом, не только мышление, но и память, формирует «обобщенные ассоциации». При непосредственном решении математических задач и обучении их решению необходимо все это учитывать.
Новости образования:
Самоанализ профессиональной педагогической позиции личности
педагога-воспитателя
Если посмотреть в целом на функциональное назначение самоанализа, то обнаружится, что он является своеобразной визитной карточкой профессионализма педагога-воспитателя, уникальным способом его самодиагностики, инструментом опосредованной оценки уровня сложившейся у воспитателя профессиональной педа ...
Анализ методической литературы по проблеме развития
творческих способностей
Изучая методическую литературу по данной проблеме, мы приходим к выводу, что творческие способности представляют собой сплав многих качеств.[4]. И вопрос о компонентах творческого потенциала человека остается до сих пор открытым, хотя в настоящий момент существует несколько гипотез, касающихся этой ...
Длительные контрольные письменные работы
Длительные контрольные работы по химии проводятся в течении целого урока, т.е. 45 минут. Нужно проводить длительные контрольные работы как минимум по следующим темам: Первоначальные химические понятия. Кислород, оксиды, горение. Водород, кислоты, соли. Вода, основания. 5. Важнейшие классы неорганич ...