Одной из разновидностей диалектического мышления является мышление научно-теоретическое (или мышление абстрактное). Отмечая, что «все научные (правильные, серьезные, не вздорные) абстракции отражают природу глубже, вернее, полнее».
В.В. Давыдов, исследовавший вопросы формирования научно-теоретического мышления у школьников, показал, что «лишь такое математическое, физическое и прочее теоретическое мышление может истинно отразить свой объект, которое выступает как логическое мышление, перерабатывающее свой опытный материал в категориях логики . Так, лишь задавая человеку содержательное обобщение, можно полагать, что он будет ориентироваться именно на существенные свойства вещи и вычленять их из массы несущественных свойств, т. е. будет обладать «чутьем процесса». Критерий же такого обобщения (как и всех других категорий) формулирует диалектическая логика, выступающая тем самым и главным «критерием» теоретического мышления .»
Таким образом, полноценное математическое мышление есть, прежде всего, мышление диалектическое.
Математическое мышление, являясь мышлением диалектическим, есть вместе с тем мышление естественнонаучное и потому обладает многими свойствами, присущими последнему.
Естественнонаучное мышление может быть охарактеризовано со стороны соответствующих ему умений осуществлять поэтапное решение научных проблем. Совокупность таких умений определяет так называемый естественно научный метод познания, который состоит из следующих элементов: понимание проблемы; точное определение ее и отграничение от других проблем; изучение всех ситуаций, связанных с данной проблемой; планирование поиска решения проблемы; выбор наиболее вероятной гипотезы; планирование и проведение эксперимента по проверке гипотезы; проведение контрольного эксперимента; выводы и их обоснование, выбор оптимального способа решения; распространение выводов на новые ситуации, в которых действуют те же факторы.
Многие конкретные методы обучения естественным наукам разрабатываются в соответствии с ее указанным методом познания; характеристика его основных этапов, специфика соответствующих этим этапам умений могут и должны учитываться и в обучении математике, в частности при постановке учебных математических задач с прикладной направленностью.
О качествах научного (математического) мышления
Математическое мышление имеет свои специфические черты и особенности, которые обусловлены спецификой изучаемых при этом объектов, а также спецификой методов их изучения.
Прежде всего, отметим, что математическое мышление часто характеризуют проявлением так называемых математических способностей. В психолого-дидактической и методической литературе в структуру математических способностей включаются многие качества мыслительной деятельности, именуемые либо как собственно математические способности (В. А. Крутецкий), либо как особенности мышления математика (А. Н. Колмогоров), ибо как качества ума (К. К. Платонов), либо как компоненты обучаемости (3. И. Калмыкова) и т.д.
Существует общее мнение об активной работе в процессе математического мышления определенных качеств мышления (например, гибкость, пространственное воображение, умение выделять существенное и т. д.), которые в равной степени могут быть соотнесены как к математическому мышлению, так и к мышлению физическому, техническому и т. д., т. е. к научному мышлению вообще.
Новости образования:
Виды речевых нарушений
Фонетическое недоразвитие. Фонетико-фонематическое недоразвитие Общее недоразвитие речи (у дошкольников). Нерезко выраженное общее недоразвитие речи. При разрешении данной проблемы исследователи выделяют разные аспекты: Так, например, профессор Б.Г. Ананьев указывает на связь ошибок в чтении, письм ...
Опытно - экспериментальная работа по использованию игровых технологий на уроках
в начальном звене школы
После изучения научной и методической литературы по нашей теме, мы проведем эксперимент и узнаем, способствует ли использование дидактических игр на уроках в начальном звене школы повышению интереса к учебе школьников. Опытно-экспериментальной базой исследования стала МОУ СОШ №7 города Костромы. Шк ...
Муниципальная система образования города Нижнего Новгорода
На сегодняшний день в г.Н.Новгород работает 360 муниципальных детских садов. По состоянию на 1 октября 2010 года количество детей в муниципальных дошкольных учреждениях составляло 4,9 тыс. детей, что на 1 тыс. 826 детей больше, чем в 2008 году. Разработана программа "Развитие сети муниципальны ...