Характеристика задач на построение

Страница 18

Алгебраический метод.

1. Одним из важных методов, применяемых в школь­ном курсе геометрии, является алгебраический метод ре­шения задач на построение. Уже в VI-VII классах уча­щиеся неоднократно применяли алгебру при решении задач вычислительного характера и задач на доказатель­ство с целью упрощения решения. Алгебра дает очень удобный и хороший способ решения геометрических вопросов аналитическим путем.

В VI классе целесообразно рассказать, что некоторые сведения по алгебре были известны еще в глубокой древ­ности, но вопросы алгебры не отделя­лись от вопросов арифметики и геоме­трии. Позже греческие ученые, такие, как Пифагор, Евклид, которые занима­лись преимущественно геометрией, по­лучили значительные результаты и в алгебре. Но многие алгебраические то­ждества доказывались ими геометри­чески. На доске в качестве примера ил­люстрируем доказательство тождества: (a + b)2 = a2 + 2ab + b2 (рис. 56).

Рис. 56

Площадь квадрата, построенного на сумме отрезков а и b, равна сумме площадей двух квадратов со сторо­нами а и b и площадей двух прямоугольников со сторо­нами а и b. В IX в. н. э. узбекский

ученый Мухаммед-бен-Муса ал-Хорезми написал книгу «Хисаб ал-джебр вал-мукабала», появление которой явилось как бы мо­ментом оформления науки алгебры. В дальнейшем ал­гебра получила свое самостоятельное развитие и начала оказывать большую помощь при решении различных за­дач других математических дисциплин, в том числе и ге­ометрии.

2. Алгебраический метод решения задач на построе­ние рассматривается как дальнейшее расширение приме­нения алгебры к геометрии. Как известно, он состоит в следующем. Предположив задачу решенной: 1) Устанав­ливаем, какой или какие отрезки (в редких случаях углы или дуги) нужно определить, чтобы решить задачу, и обозначаем длины этих отрезков через х, y, z, ., а длины данных отрезков – через а, b, с, …, то есть вводим обозначения. 2) Из условия задачи, пользуясь из­вестными геометрическими соотношениями между иско­мыми и данными отрезками, составляем уравнение или систему уравнений. 3) Решаем это уравне­ние или систему уравнений. 4) Исследуем получен­ные формулы для неизвестных отрезков по условию задачи. 5) Строим с помощью инструментов искомые отрезки, выраженные полученными формулами через данные отрезки. После того как неизвестные построены, выполняем построения, которые окончили бы решение, проводим доказательство и исследование.

Первые четыре этапа известны учащимся, так как при решении геометрических задач на вычисление и алгеб­раических на составление уравнений всегда выделялись такие же этапы. Это говорит о том, что задачи на по­строение, решаемые таким методом, можно рассматри­вать как обобщение задач вычислительного характера, а с другой стороны, при применении алгебраического ме­тода всякая задача на построение заменяется вначале задачей на вычисление, так что каждая задача на постро­ение, решаемая этим методом, является, по существу, и задачей на вычисление.

4. Целесообразность рассмотрения этого метода в средней школе не определяется только тем, что учащиеся ознакомятся с еще одним видом задач, для ре­шения которых применяется алгебра. Алгебраический метод решения отдельных, даже сложных задач на по­строение более доступен учащимся, ибо достаточно по­лучить соответствующую формулу для определения иско­мой величины, чтобы стало ясным все решение задачи.

Алгебраический метод позволяет легко установить условия возможности решения задачи, а также наличие определенного числа решений при тех или иных значе­ниях и положениях данных.

5. Однако в средней школе не следует чрезмер­но увлекаться этим методом за счет других важных раз­делов. Нужно решать доступные и интересные для учащихся задачи.

Страницы: 13 14 15 16 17 18 

Новости образования:

Этапы профильного обучения
Основная идея обновления старшей ступени общего образования состоит в том, что образование должно стать более индивидуализированным, функциональным и эффективным. Согласно «Концепции модернизации российского образования на период до 2010 года» на старшей ступени общеобразовательной школы предусматр ...

Понятие и определение одаренности у детей
Одаренность - значительное по сравнению с возрастными нормами опережение в умственном развитии либо исключительное развитие специальных способностей (музыкальных, художественных и др.). Одаренность детей может быть установлена и изучена только в процессе обучения и воспитания, в ходе выполнения реб ...

Типология диалогической речи
Диалогическую речь можно классифицировать, исходя из количества участников общения, его социально-коммуникативной характеристики, соотношения речевых мотивов собеседников, величины диалогического текста, объема и структуры единичного высказывания, и других характеристик. Исходя из количества участн ...

Главное на сайте

Copyright © 2019 - All Rights Reserved - www.focuseducation.ru