Способы эффективного обучения математике

Педагогические практики » Психологический базис усвоения математики » Способы эффективного обучения математике

Страница 1

Современное содержание математического образования направлено главным образом на интеллектуальное развитие младших школьников, формирование культуры и самостоятельности мышления.

Важнейшим фактором в развитии мыслительных операций служат педагогические системы развивающего обучения [22].

Обучение на уроке предполагает опору на личный опыт учащихся. Ученикам легче, интереснее, доступнее изучать материал, если он связан с местными природными и социальными явлениями. Опора на личный опыт - необходимые условия успешности проведения урока.

Одна из главных задач – научить ученика учиться, научить самостоятельно добывать знания – решается не в общем плане, а конкретно на каждом уроке.

Включение проблемных ситуаций и задач, использование технических средств и красочных наглядных пособий, проведение опытов, экскурсий, наблюдений способствует развитию познавательной активности учащихся, воспитанию любознательности.

Самостоятельная работа учащихся т.е. их работа в отсутствии учителя или по крайней мере без обращения к его помощи в течении какого-то промежутка времени, является важнейшей частью всей работы по изучению математики. Многие вопросы школьного курса математики могут быть успешно изучены учащимися самостоятельно с помощью учебника, так как учебник имеет обучающую функцию, во многом аналогично функции учителя. Но от учителя зависит сделать процесс приобретения знаний с помощью учебника более успешным – научить учащихся самостоятельно приобретать знания, научить их учиться.

Наиболее распространенными являются следующие виды работы с учебником:

1) чтение текста вслух;

2) чтение текста про себя;

3) воспроизведение содержания прочитанного вслух;

4) обсуждение прочитанного материала;

5) разбиение текста на смысловые части, выделение главного;

6) самостоятельное составление плана прочитанного, который может быть использован учеником при подготовке к ответу;

7) работа с оглавлением и предметным указателем;

8) работа с рисунками и иллюстрациями;

9) работа над понятием, термином;

10) составление конспекта схемы, таблицы, графика на основе материала, изученного по учебнику.

Существуют различные трактовки терминов «задача» и «математическая задача», одна из них звучит так: «математическая задача» - это математический вопрос, ответ на который не является непосредственным и не может быть получен путем прямого применения известных схем.

Задачу можно считать решенной только тогда, когда найденное решение:

1) безошибочно,

2) обосновано,

3) имеет исчерпывающий характер.

Эти требования являются совершенно категорическими: если не выполнено хотя бы одно из них, то решение считается вовсе непригодным или неполноценным.

Одним из важных видов самостоятельной работы является выполнение домашних заданий, используемых для закрепления изученного. Для организации этой работы необходим четкий инструктаж о том, как и что делать дома, желательно информировать родителей о том, как учащиеся должны готовить домашние задания по математике, как они должны работать книгой, вести тетрадь и т.д. Учащимся можно рекомендовать следующие общие приемы:

Страницы: 1 2 3 4

Новости образования:

Методические рекомендации по формированию лексики у дошкольников с ОНР
Исходя из результатов нашего исследования, нами были выделены следующие направления логопедического воздействия: 1 направление. Обогащение словаря синонимов. 2 направление. Развитие атрибутивного словаря. 3 направление. Развитие номинативного словаря. 4 направление. Обогащение словаря антонимов. 5 ...

Общепедагогические принципы экологического образования дошкольников
Исходя из выше сказанного, можно выделить ряд общепедагогических принципов отбора экологического образования дошкольников. Они включают: общепедагогические принципы (гуманизма, научности, систематичности и др.), принципы, специфические для экологического образования (прогностичности, интеграции, де ...

Геометрия Лобачевского
В мемуаре «О началах геометрии» (1829) Лобачевский прежде всего воспроизвел свой доклад 1826г. Он определяет основные понятия геометрии, не зависящие от V постулата, и заметив, что сумма углов прямолинейного треугольника не может быть , как это имеет место у сферических треугольников, Лобачевский з ...

Главное на сайте

Copyright © 2019 - All Rights Reserved - www.focuseducation.ru