Об актуальности проблемы развития логического мышления школьников можно говорить в различных аспектах.
Во-первых, проблема развития логического мышления должна иметь свое отражение в школьном курсе математики в силу недостаточности подготовки учащихся в этой части, в силу большого числа логических ошибок, допускаемых учащимися в усваиваемом содержании школьного курса математики, где предъявляются наиболее высокие требования по сравнению с другими школьными предметами по логической организации материала.
Во-вторых, необходимо четко поставить, сформулировать проблему в силу того, что разные авторы под развитием логического мышления подразумевают различные задачи. В статьях, рекомендациях, как правило, поднимаются отдельные аспекты, обшей задачи развития логического мышления. Есть необходимость в целом сформулировать проблему.
Существуют различные трактовки терминов «логика мышления», «логическое мышление». В педагогике, в методике преподавания математики эти понятия отдельными авторами понимаются очень широко как обеспечение связей в мыслях. Такое понимание охватывает и логику поиска нового знания (диалектическую логику) и логику оформления имеющегося знания и логику здравого смысла. Также имеет место смешение элементарных психологических операций процесса мышления и логических форм. Нередко к логическим операциям относят элементарные операции мышления: анализ, синтез, сравнение и т.д.
Кроме того, часто понятия диалектическое и логическое мышление четко не разделяются.
В данном изложении принята точка зрения на логическое мышление как отличное от диалектического, творческого, мышления поиска нового знания.
В реальном процессе мышления творческое и логическое мышление тесно переплетены, взаимопроникают, но нетождественны.
В целях изучения проблемы развития логического мышления эти два понятия целесообразно разделить. Тогда логическое мышление - мышление, проходящее в рамках формальной логики, отвечающее требованиям формальной логики. Логическое мышление в таком понимании не является творческим, т. к. согласно законам и правилам формальной логики нельзя вывести из посылок ничего такого, что не было бы в этих посылках заключено. Эта мысль содержится в словах английского философа Д. Локка о том, что силлогизм в лучшем случае есть лишь искусство вести борьбу при помощи того небольшого знания, какое у нас есть, не прибавляя к нему ничего. Известные математики, изучавшие процесс открытия нового знания (Ж. Адамар, А. Пуанкаре), психологи, изучавшие процесс мышления (Я. А. Пономарев, А.Ф. Эсаулов и др.), разделяют творческое и логически мышление. Логические рассуждения предполагают отсутствие скачка мысли, пропуска отдельных звеньев в рассуждении и всего рассуждения, т. е. озарения, инсайта, интуиции.
Задача развития логического мышления учащихся ставится и определенным образом решается в массовой школе. Во всех школьных программах по математике как одна из целей обучения предмету отмечена – развитие логического мышления. Еще столетие назад Л.Н. Толстой отмечал, что математика имеет своей задачей не счисление, но обучение человеческой мысли при счислении.
Но программы по математике пока не содержат расшифровки этой цели. Поэтому каждый учитель понимает ее по-своему и по-своему ее решает. Представляется, что есть необходимость осознавать проблему развития логического мышления во всей широте и многогранности и уметь ее реализовывать в обычном учебном процессе, не привлекая дополнительного содержания, лишь расставляя в обычном учебном материале определенные акценты.
Выработка умений учащихся логически мыслить протекает быстрее, если обучение определенным образом организовано, если осознаются отдельные логические формы. С осознанием отдельных логических форм человек начинает более четко мыслить и выражать свои мысли в речи.
Существующее положение дел в усвоении норм логического мышления не может считаться удовлетворительным в массовой школе, т. к. многие учащиеся, выпускники школ допускают многочисленные логические ошибки при определении понятий, их классификации, путают прямую и обратную теоремы, свойства и признаки понятий, не умеют подводить под определение, не умеют строить отрицания высказываний и т. д. Приведем примеры типичных ошибок учащихся. Например, при обосновании, что треугольник со сторонами 3,4,5 является прямоугольным, называется теорема Пифагора, а не ей обратная. При определении понятий неверно указывается родовое понятие: «Диаметр – прямая, проходящая через центр окружности». Неверно или не полностью указываются видовые отличия: «Параллелограмм – это такой четырехугольник, у которого боковые стороны равны». Отсутствует родовое понятие или видовое отличие: «Средняя линия трапеции – это отрезок», «Параллелограмм – это когда стороны параллельны». Формулировки определений избыточны: «Равнобедренный треугольник – это треугольников котором стороны, лежащие против равных углов, равны».
Новости образования:
Дополнительные формы организации педагогического процесса
Урок как основная форма органично дополняется другими формами организации учебно-воспитательного процесса. Часть из них развивалась параллельно с уроком, т.е. в рамках классно-урочной системы (экскурсии, консультации, домашняя работа, учебные конференции, дополнительные занятия), другие заимствован ...
Уроки-семинары по русскому языку в старших классах
Необходимость выбора иной формы организации уроков диктуется и тем, что старшеклассники – это потенциальные студенты, поэтому вполне закономерно уделять особое внимание таким формам работы, как практикумы, семинары, лекции, зачеты, консультации и т.д., ведь именно в этих формах будут проходить заня ...
Источники формирования самооценки в младшем
школьном возрасте
самооценка младший школьный ценностный Самооценка является важным компонентом развития самосознания личности, то есть осознания человеком собственных умственных способностей, физических сил, поведения и мотивов, своего отношения к окружающим и к самому себе. Проблема развития самооценки у школьнико ...