Характеристика чертежа-задания показывает, что задачи на построение делятся на два существенно различных вида:
Задачи «метрические», в которых требуется построить геометрический образ по данным элементам, имеющим определенные размеры, но не определенными по положению на плоскости. Следовательно, и требуемый в задаче геометрический образ может занимать произвольное положение на плоскости (пример 1).
Задачи «положения», в которых построение требуемого геометрического образа выполняется на основе данных элементов, из которых хотя бы один определен по положению на плоскости. Следовательно, и требуемый геометрический образ должен занимать определенное положение на плоскости (относительно данных элементов, пример 2).
В теории геометрических построений каждый инструмент выполняет свойственную только ему операцию. Описание этой операции является его абстрактной характеристикой и дает возможность указать на те элементы чертежа, которые могут быть построены при однократном использовании того или иного инструмента.
Обычно на практике несколько «абстрактных» инструментов объединяются в один (например, чертежный треугольник является комбинацией односторонней линейки, прямого и двух острых углов). Часто также один инструмент используется для выполнения двух (или нескольких) совершенно различных операций (например, линейка используется для построения прямой, проходящей через две заданные точки, и общих касательных к двум данным окружностям). Это дает возможность значительно сократить число используемых инструментов.
Укажем характерные операции для наиболее распространенных в школьной практике чертежных приборов и на те элементы чертежа, которые могут быть получены при однократном их использовании.
Циркуль. Характерная для циркуля операция – проведение окружности данным (или произвольным) радиусом с центром в данной (или произвольной) точке.
Таким образом, циркулем могут быть построены:
а) окружность данного радиуса с центром в данной точке (радиус может быть задан двумя точками);
б) дуга окружности данного радиуса с центром в данной точке.
Линейка. Характерная операция для чертежной линейки – проведение прямой через две данные точки.
На практике линейкой пользуются также для построения к данной окружности касательной (рис. 8), проходящей через заданную вне ее точку, и для построения общих внешних и внутренних касательных к двум окружностям.
Рис. 8
Теоретически эти операции так же строги, как и проведение прямой через две данные точки. Практическая точность в большинстве случаев вполне удовлетворительна. Этот прием часто используется в чертежных работах и при разметке. Итак, при помощи линейки могут быть построены:
а) прямая, проходящая через две данные точки;
б) отрезок прямой, ограниченный двумя данными точками;
в) луч, проходящий через данную точку и имеющий начало в другой данной точке;
г) касательная к данной окружности, проходящая через данную вне окружности точку;
д) внешние и внутренние касательные к двум данным окружностям.
Чертежный треугольник обладает всеми свойствами односторонней линейки. Следовательно, с помощью чертежного треугольника могут быть получены те же элементы, что и с помощью линейки, а также прямая, проходящая через данную точку и образующая с данной прямой угол, равный одному из углов чертежного треугольника.
Транспортир. Характерной операцией для транспортира является построение точки, лежащей на луче, проходящем через данную на прямой точку и образующем заданный угол с этой прямой (рис. 9).
Рис. 9
Абстрактная характеристика каждого инструмента может быть использованы для выяснения вопроса о разрешимости задач на построение теми или иными инструментами.
С этой целью в теорию геометрических построений вводится понятие класса конструктивных элементов. К этому классу относятся все заданные элементы, а также: прямая, если она определяется двумя конструктивными точками; окружность, если она определяется конструктивным центром и конструктивным радиусом (пара конструктивных точек); точка, лежащая на луче, проходящем через заданную на конструктивной прямой точку и образующем с этой прямой заданный угол, и, наконец, точки, являющиеся пересечением конструктивных линий (прямых и окружностей).
Новости образования:
Решение промежуточных задач по самоконтролю
Под деятельностью понимается совокупность действий, объединенных общей целью и выполняющих определенную общественную функцию. Обязательной предпосылкой всякой деятельности является наличие потребности. Именно потребности направляют и регулируют конкретную деятельность. Одна из основных задач физиче ...
Анализ учебников географии
Учебник относится к вербально-информационным средствам обучения. Он не только обеспечивает усвоение знаний, но и организует самостоятельную учебную деятельность школьников. Учебники нового поколения формируют географическую культуру учащихся, которая включает географические знания и умения, географ ...
Коммуникативная, психологическая
и лингвистическая характеристика особенностей диалогической речи
Диалогическая речь – это процесс разговорного взаимодействия двух или более участников общения. Поэтому в пределах разговорного акта каждый из участников по очереди выступает как слушатель и как вещатель [10, с. 146]. Диалогизирование – это процесс речевого взаимодействия, предусматривающий обмен р ...