Характеристика задач на построение

Страница 8

Сам учитель должен выбирать тот способ решения, который является наилучшим и с теоретической и с мето­дической точек зрения. Нельзя руководствоваться только простотой построения, понятием геометрографии. Следует учитывать не только трудность выполнения построе­ния, но и трудности анализа, доказательства и исследо­вания.

3. Из приведенных примеров видно, что решение не всегда сводится к элементарным построениям, а чаще всего к так называемым основным построениям или основным задачам на построение. Подобно тому, как при доказательстве теорем используются и результаты ранее изученных теорем, а не только аксиом, так и при решении задач на построение при анализе и описании построения используются ранее решенные задачи. Задачи, решение которых в дальнейшем часто используется, обычно отно­сят к основным задачам на построение. Список основных задач на построение определяется учебником, но надо помнить, что задача на построение может или не может быть отнесена к основным и в зависимости от степени подготовки учащихся.

В средней школе нецелесообразно при решении каждой задачи требовать от учащихся в письменной или устной форме подробного описания построений. Такое описание, особенно в VI-VII классах, требует большой затраты времени. Интерес учащихся к решению задач на построение понижается, ибо главной трудностью стано­вится изложение решения, сводящееся иногда к целым «сочинениям».

Если анализ задачи выполнен достаточно подробно, то и при устном пояснении к решению, и в письменных работах достаточно, если ученик указывает, например: «Строим прямоугольный треугольник по гипотенузе и ка­тету», – и верно выполняет это построение. Учитель все­гда в состоянии проверить, правильно ли выполнил ученик построение, если даже описание и отсутствует. Нередко, разобрав с учащимися условие задачи и на­метив план построения, предлагаем учащимся выполнить это построение в тетрадях, не требуя каких-либо поясне­ний в письменной форме.

Важна и цель, для достижения которой решается та или иная задача на построение. Если на данном уроке, например, главная цель решения задач – обучение отыс­канию решений, то мы стремимся научить учащихся анализировать условие задачи, уметь видеть на чертеже нужные фигуры и имеющиеся отношения между фигура­ми и их элементами. В таком случае незачем усложнять работу требованием подробного описания построения. Все внимание учащихся должно быть сосредоточено на главном, и не нужно распылять его на второстепенные вопросы, не имеющие прямого отношения к поставленной цели.

Если на первых порах решения задач на построение мы всегда требуем непосредственного выполнения по­строения инструментами, то нередко, когда убеждены, что все учащиеся класса сумеют выполнить чертеж с по­мощью инструментов, разрешаем учащимся указывать лишь план построении, выполняя чертеж от руки, а ино­гда просто ограничиваемся лишь составлением плана построения, то есть анализом, или с проведением еще исследования.

4. С введением геометрического материала в курс арифметики учащиеся уже в V классе приобретают навыки в применении таких инструментов, как линейка, циркуль, чертежный треугольник, знакомятся с устройством и применением транспортира. При вычерчивании секторных диаграмм, а также на уроках географии они закрепляют свои знания об устройстве транспортира и приобретают навыки в применении его для измерения углов и для построения заданных углов. На уроках труда в школьных мастерских пятиклассники при разметке при­меняют линейку, циркуль, угольник. Эти навыки закреп­ляются в VI классе при изучении первой темы курса геометрии «Основные понятия».

При изучении свойств прямой учащиеся выполняют построения всевозможных прямых через одну, две, три, четыре точки. Выполняя необходимые построения, они убеждаются, что через одну точку можно провести сколь­ко угодно прямых, через две – только одну, через три точки можно провести три прямые или только одну, четы­ре точки могут определять только одну прямую, или четыре прямые, или шесть прямых. Это содействует раз­витию пространственных представлений.

Учащиеся должны приобрести прочные навыки в вы­полнении действий над отрезками и в выполнении нало­жения одного отрезка на другой, что существенно важно для дальнейшей работы. Здесь они закрепляют навыки в применении линейки и циркуля, так как часто нужно уметь «взять» отрезок циркулем, отложить его на произ­вольной прямой, сравнить отрезки путем наложения одного на другой. Применение транспортира, причем не только в качестве малки, но и для измерения углов, облегчает усвоение раздела «Сравнение углов. Действия над углами: сложение, вычитание, умножение на целое число. Биссектриса угла».

Страницы: 3 4 5 6 7 8 9 10 11 12 13

Новости образования:

Значение музыкального воспитания
Предмет теории и методики музыкального воспитания детей в своей основе опирается на музыку как вид искусства. Предметом теории и методики музыкального воспитания детей являются вопросы целенаправленного управления процессом музыкального воспитания, обучения и развития ребенка, установление взаимосв ...

Выявление уровня развития творческого мышления и способностей к дизайн-деятельности
Для того чтобы определить «зону ближайшего действия», то есть тот уровень умений и навыков, который мы можем достичь в процессе обучения, нам нужно провести с дошкольниками диагностики, определяющие имеющийся уровень развития творческого мышления и дизайнерских способностей. Диагностическую работу ...

Уровни умения решать задачи
Исходя из того, что познавательная область является для процесса обучения главной, то для определения качества достижения целей важно такое понятие, как уровень усвоения. В современной педагогике в качестве показателей обученности определяют уровни усвоения знаний и умений, состояние видов активной ...

Главное на сайте

Copyright © 2019 - All Rights Reserved - www.focuseducation.ru